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ABSTRACT 

A signal processing problem encountered with many sensor systems having a 
wide field-of-view is detection of small, unresolved objects moving in a straight line 
amid stationary clutter. The wide field-of-view combined with the need to accurately 
pinpoint object positions imply that these sensors must have hundreds of thousands 
of samples in their output. To process this amount of data in a timely fashion, 
computationally efficient algorithms are a necessity. 

In this report, a computationally efficient set of algorithms is described for de- 
tecting satellites, meteorites, and other moving objects using data from an optical 
telescope charge-coupled device (CCD) focal plane in the MIT Lincoln Laboratory 
Demonstration Surveillance System (DSS). The trade-off of reduced detection sen- 
sitivity for lower computational cost in the algorithm is quantitatively discussed. 
Major techniques employed are: 

1. Sample normalization by temporal mean and standard deviation to 
suppress clutter. 

2. Maximum value projection to reduce the dimensionality of the data. 

3. A two-stage matched filter detector which first nominates and then 
confirms signal candidates. 

4. Two-dimensional binary velocity filtering. 

The techniques should have practical application to other wide field-of-view 
sensors where moving object detection is important. 

in 
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1.   INTRODUCTION 

Detection of small moving objects in a time sequence of data is a problem encountered in 
surveillance applications such as the optical detection of satellites [1], infrared detection of dim 
moving objects [2,3,4], detection of objects using spectrograms from several acoustic channels [5,6], 
and other applications. 

The combined requirements of wide field-of-view and accurate position estimates imply that 
these sensors must have many samples at their output, each sample representing the state of some 
small portion of the field-of-view at a given time. In many situations the apparent size of the object 
will be less than the resolution of the sensor, and the movement of the object will approximate 
a straight line during the observation. Therefore, detection algorithms must simply search for 
multidimensional line segments in the large volume of sensor data. 

If computational cost is of no concern, the optimal approach, which gives the greatest proba- 
bility of detection (pd) for a fixed probability of false alarm (p/a), is the multidimensional matched 
filter [7]. This approach involves summing up sample values in all possible multidimensional line 
segment paths (i.e., velocity vectors) and subsequently comparing these summations to detection 
thresholds. Unfortunately, if the volume of data is huge, then the number of velocity vectors to 
consider is also huge, resulting in prohibitive computational costs. 

Some authors have attempted to perform the full-dimensional path search in computationally 
efficient ways. Blostein and Huang [8] organize the paths in a tree structure and perform a Wald- 
type sequential probability ratio test procedure to eliminate having to search through all branches 
of the tree. Barniv [3] uses a dynamic programming approach to search through the paths. Porat 
et al. [2] use a full-dimensional bank of filters in the spectral domain (a full-dimensional FFT is 
required) to do the various path summations. Unfortunately, all of these methods are much too 
computationally expensive for the amount of data and possible object velocities in the MIT Lincoln 
Laboratory DSS. 

Thus, there is a strong motivation to use suboptimal detection algorithms which will have less 
sensitivity than the optimal algorithm but will be much easier to implement. The philosophy of 
algorithm development has been to first develop signal and noise models which closely approximate 
reality yet are simple enough to be used in analysis. Next, these models are used to derive optimal 
detection procedures using classical detection theory. If the procedures are computationally pro- 
hibitive, then suboptimal procedures are created. At all times the trade-off between computational 
cost and detection sensitivity is kept in mind. Finally, the algorithm is tested on real data and 
modified appropriately until satisfactory performance is achieved. 

The particular sensor for which the algorithm was developed is a 420 x 420-pixel frame-transfer 
optical CCD produced at MIT Lincoln Laboratory. Multiple CCDs mounted adjacent to one 
another are placed in the focal plane of a telescope. Figure 1-1 is a block diagram of the entire 
system. 
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Figure 1-1.    Block diagram of the optical detection system. 

The telescope generates an image of the sky on a CCD focal plane. The equatorial telescope 
mount can be used either in sidereal track mode where stars appear stationary or target track mode 
where stars appear as streaks. The mount step- and settle-time is about 2 s. It is desirable for the 
detection processing to be completed within this time interval. 

The CCDs are exposed for intervals of time ranging from 0.2 to 12.8 s, and the pixel charges 
are subsequently read out at a 1-MHz rate. The output from each CCD array goes to its own 
detection processor. The voltages are quantized to 12 bits by an A/D converter and are specified 
by the position of the CCD cell on the focal plane and the frame number corresponding to the time 
when the voltage was sampled. The amount of data produced per look is huge, being as much as 
16 frames, each frame consisting of 176,400 pixels for each CCD array. In Figure 1-2 are shown the 
first and last frames from a 16-frame set of 420 x 420-pixel CCD data. 

The detection processing is split into two sections. The first section, the Moving Target 
Indicator (MTI) filter, performs several simple operations on each sample as it arrives at the input 
to the processor. Because these operations must be performed relatively quickly, the MTI filter 
is implemented using special-purpose hardware. In the hardware implementation we have built, 
all MTI operations are completed about 1 s after the completion of data input. The MTI filter 
eliminates objects moving at a specified velocity (usually zero) while projecting the multiframe 
data along the time axis onto a single frame, which is binary quantized. The volume of binary 
quantized data is hundreds of times less than the original input data. 

The much reduced data set at the output of the MTI filter is sent to the second section of the 
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Figure 1-2.    First and last frames of a 16-frame set of 420 x 420-pixel CCD data, 
binary quantized MTI output and detected streaks. 



detection algorithm, the post-MTI processor, and implemented with a Motorola 68020 micropro- 
cessor. The relatively complex post-MTI algorithm examines the binary projection of the data and 
performs binary velocity filtering and full-precision estimation of streaks corresponding to moving 
objects. Real-time implementation (approximately 1 s allowed for post-MTI processing) can be 
achieved using a single 68020 processor per CCD chip. The parameters of detected moving objects 
are fed to a host processor, which examines the detected streaks of all the CCD arrays and looks 
for streaks which cross from one CCD array to another CCD array. The host processor sends its 
list of detected streaks to the data processor, which performs the various mission functions. These 
functions include maintenance of a catalog of known objects, measurement of changes in the orbits 
of these objects, detection and orbit determination of new objects. 

Although the detection algorithms are presented in the context of DSS, they are general enough 
so that, with appropriate modifications, they may be of use in any scenario where small moving 
targets are being detected in a time sequence of data. Indeed, recent experiments have been 
successfully performed in which the system is operated in object track mode (objects appear as 
points and stars are streaked). Only minor changes to the software were needed to accommodate 
the new system operating mode, which is discussed in section 2.8. 

As the detection algorithm is split into two sections, this report is split into two parts, the first 
dealing with the MTI processor and the second dealing with the post-MTI processor. 



2.   THE MTI FILTER 

2.1    INTRODUCTION TO THE MTI FILTER 

The MTI filter has for its input a number of frames of CCD data. These frames form a time 
sequence consisting of moving objects, clutter (stars, galaxies, etc.), Gaussian distributed noise 
(from the amplifier circuit), and Poisson distributed noise, all added together. 

A block diagram of the algorithm is shown in Figure 2-1. First, the MTI filter forms a single 
frame of data consisting of the maximum value in each pixel found among 2 to 16 frames of input 
data. The maximum number of frames is constrained by the hardware, not the algorithm. The 
middle channel in Figure 2-1 is the pixel average computed across the frames, while the bottom 
channel derives an estimate of the pixel standard deviation. Combining the three channels as shown 
yield a single frame where streaks corresponding to moving objects are retained, while nonmoving 
objects are absent or greatly attenuated. The final output of the MTI filter is a binary quantized 
image of the projection upon which true matched filter detection is performed in the post-MTI 
processor. An exhaustive matched filter velocity search is easily implemented because operations 
occur only on the "1" pixels. The only candidate streak paths considered are those with "1" pixels 
for their endpoints. If the number of "1" pixels is small the number of these paths is also small. 

1 

TIME 
SEQUENCE 

OF DATA 

MAXIMUM VALUE 
PROJECTION 

PIXEL AVERAGE 

PIXEL STANDARD 
DEVIATION 

§K> BINARY 
QUANTIZATION 

TO 
POST-MTI 
BINARY 

MATCHED 
FILTER 

Figure 2-1.    Block diagram of MTI filter. 

In section 2.2 the signal and noise models will be discussed, supplying a basis for the algorithmic 
issues. The signal and noise models are used to derive the optimal full-dimensional matched filter 
detector in section 2.3. The justification for maximum value projection is discussed in section 2.4. 
In section 2.5 the normalization of the maximum value projection by pixel mean and standard 
deviation is explained. Section 2.6 discusses the method of pairwise binary quantization, which 
supplies a 2-dB increase in detection sensitivity over single sample binary quantization. In section 
2.7 the steps of the MTI algorithm are briefly summarized without explanation to present a complete 
but concise picture. In section 2.8 we illustrate how the MTI algorithm can be modified to eliminate 



background clutter moving at any known velocity, accommodating both sidereal and target track 
modes of the telescope mount. The sensitivity of the MTI algorithm is compared to the GEODSS 
MTI algorithm in section 3.6.1. 

2.2    SIGNAL AND NOISE MODELS 

During a frame exposure, photons hit a CCD pixel cell and generate electrons. The electrons 
are shifted out during the read cycle to an amplifier whose output is a voltage proportional to the 
number of electrons at its input. Using a 12-bit A/D converter, the output voltages of the amplifier 
are converted to digital numbers which are processed by the detection algorithms. 

Denote the number of electrons produced by a pixel at position x and frame t as r(x, t). While 
position on the focal plane is conventionally specified in two dimensions, for ease of notation the 
position will only be specified in the single-dimensional variable x which corresponds to the linear 
address of a pixel in a one-dimensional array assuming the image is read out in a raster scan manner. 
Then the pixel electron count is the sum of four terms 

r(x, t) = c(x, t) + d(x, t) + s{x, t) + n(x, t) (2.1) 

where c(x, t) is the circuit induced Gaussian noise, d(x, t) is the dark current and background light 
induced Poisson noise, n(x, t) is noise from nonmoving objects, and s(x, t) is the signal to be de- 
tected, i.e., the moving object. The large majority of the pixels will not have the nonmoving object 
component, since these objects (stars, galaxies, and nebula) are relatively rare events. Without 
this component the probability density of the combined noise is the convolution of Poisson and 
Gaussian densities, which is rather cumbersome for analysis. In section 2.4 to simplify analysis, 
the shape of the Poisson-Gaussian convolution is approximated as pure Gaussian, and the Poisson 
signal component is approximated as an additive dc offset. 

The detection statistics are functions of the input signal-to-noise ratio (SNR) which is defined 
in units of decibels as 

201og10 
(mean of signal+noise) — mean of noise 

standard deviation of noise 
(2.2) 

for a single pixel of the moving object at the input to the MTI filter. The amplitude SNR is simply 
the bracketed quantity in (2.2). 

2.2.1     Circuit Noise 

The Gaussian distributed noise is independent, identically distributed (i.i.d.)   from pixel to 
pixel and has probability density 

p(c(M)) =      *     e^)2/-2 (2.3) 
V27TCr 



where c(x, t) denotes the Gaussian portion of the pixel charge at location x on the focal plane 
for frame t. The standard deviation of the Gaussian noise is a in (2.3) and is known a priori 
by measurement of the CCD characteristics. The primary source of the noise is the circuitry 
which converts the CCD electron charges to voltages high enough to drive the A/D converter. 
The standard deviation is usually specified as if it were being added at one point directly to the 
electrons of the CCD charge packet before amplification. For Lincoln Laboratory CCDs, a standard 
deviation as low as 5 rms electrons has been measured for the circuit noise. 

2.2.2      Poisson Distributed Noise 

The Poisson distributed noise is due to background light and the inherent dark current of the 
CCD. While it is i.i.d. over time at a given location x, the Poisson parameter A varies with x in an 
unpredictable manner due to nonuniformities in the CCD cells and background illumination. The 
mean and variance of the Poisson distribution is equal to A. The probability distribution of the 
Poisson portion of the pixel electron count is 

p-\(x)\tT\d(x,t) 

"""*•">=   4,;;. (2-4» 

where \{x) denotes that the A parameter is a function of position, and d(x,t) is a nonnegative 
integer corresponding to the number of electrons in the pixel charge packet due to the Poisson 
distribution. Assuming that no other processes are present in the pixel charges, the maximum 
likelihood estimator of A(x) is simply the average of the pixel electron count at location x over time 
t as in 

M*) = -^£>0M) (2-5) 
t=i 

where N is the number of frames of data. In reality since other processes will be present in unknown 
proportions, (2.5) may not always be the best estimator, but because of its computational simplicity 
it is employed in the algorithm. 

2.2.3     Nonmoving Objects 

Unfortunately, there is an erratic portion of the pixel charge n(x, t) due to nonmoving objects 
like stars, galaxies, etc. If there were no atmospheric turbulence or mount jitter, these objects 
could then be viewed as nonuniformities in the background illumination, and the Poisson model of 
(2.4) would be valid. However, the presence of jitter randomly perturbs the position of the object 
on the focal plane, producing variations in illumination which are difficult to accurately model. For 
the most part the pixel electron counts have probability densities with large tails (relative to their 
standard deviation) and wide variability with position. For the idealized case where the nonmoving 



object is a point source exactly centered in a pixel, and the jitter and point spread function of the 
optics are both Gaussian distributed, Fried [9] has shown that the illumination on the pixel will 
have a log-normal distribution. 

The following example illustrates why nonmoving objects produce illuminations with widely 
varying statistics. Assume the nonmoving object is a uniformly lit disk of several pixels diameter, 
and that the jitter is less than a pixel in extent. Then, pixels in the center of the disk will be lit 
with constant intensity and the resulting electron count will have Poisson distribution, while pixels 
right at the disk edge will have varying amounts of light from the disk dependent on the jitter 
movement at the particular time during which the frame is exposed and will have unpredictable 
distributions. Therefore, the illumination distributions due to the disk will be a strong function of 
proximity to the disk's edge. 

2.2.4    Moving Objects 

Detection and metric parameter estimation of moving objects is the end goal of the algorithm. 
A moving object is classified as an object with velocity greater than or equal to a pixel per frame 
in any arbitrary direction. In general, a moving object may vary dramatically in brightness as 
a function of time, a case in point being a rotating satellite with large solar cell panels. It is 
difficult to exploit the variation in brightness without a priori information. Therefore, to simplify 
the algorithm the object is assumed to be of constant brightness, except in the final stages of 
parameter estimation (after detection) where amplitude information is easily incorporated. 

Suppose that the object passes through position X in frame T, then it is assumed that r(X, t) 
for t / T has no contribution from the object. In practice if X is the position of the first occurrence 
of the object in frame T, then r(X,T — 1) may have significant contribution from the object; while 
if X is the position of the last occurrence of the object in frame T, then r(X,T + 1) may have 
significant contribution from the object. However, to reduce algorithm computations the simplified 
model is used in algorithm derivations. 

Define Xs(x) as the spatial distribution of the intensity of the object at t = 0. For most objects 
As(x) will appear to be a streak with length equal to the speed of the object in pixels per frame. 
The spatial distribution of the intensity at some other value of t is simply a spatially shifted version 
of the spatial distribution, Xs(x — vxt — nrow • vyt), where vx is horizontal velocity of the object 
in pixels per frame, vy is the vertical velocity of the object in pixels per frame, and nrow is the 
number of pixels in a row on the CCD. The two spatial dimensions of the CCD are represented 
by the single-dimensional variable x, which specifies spatial position in a raster scan fashion. We 
only allow these velocities to be integers for our simplified model, although, in general, they will 
be continuous quantities. Unfortunately, allowing continuous velocities result in the derivation of 
detectors which would require spatial interpolation, which is a computationally expensive operation. 
The s(x, t) contribution from the object will be a spatially dependent Poisson distributed random 
quantity of the form 



p(s(x,t))    = 
e-\4x-vxt-nrowvyt)Xs(x _ ^ _ nrQW . Vyty(x,t) 

s(x,t)\ 
(2.6) 

2.3    OPTIMAL FULL-DIMENSIONAL DETECTOR 

Consider the case where the dominant source of noise is dark current and uniform background 
light, as discussed in section 2.2. The nonmoving objects of section 2.3 are ignored since they 
occur infrequently, and an heuristic measure of standard deviation can handle their occurrence as 
is discussed in section 2.5. 

The log likelihood ratio detector [10] achieves the highest probability of detection for a fixed 
probability of false alarm and is of the form 

log 
p( r(x,t) for all x,t  | Hsig) 

p( r(x,t) for all x,t   | Hnoise) 

? 
>T. (2.7) 

Under the signal hypothesis the samples will have the sum of the signal and noise contributions 

(A(x) + As(x - vxt - nrow • vyt))
r(xa) e-A(»)-Mx-v,t-nrowvyt) 

p(r(x,t) | Hsig) =     (2.8) 

and for the noise hypothesis, the samples will contain the noise contribution alone 

p(r(x,t) | Hnoise) - 
A(x) r(z,t)_-A(x) 

r(x,t)\ 
(2.9) 

Combining (2.7), (2.8), and (2.9), the optimal detector is 

N 

X       \t=\ 

V^ r(x + vxt + nrow • vyt, t) log(l + 
Xs(x) 

\(x + vxt + nrow • vyt) 
))>Ti        (2.10) 

where constant terms have been absorbed in the threshold T\.   For the weak signal case, where 
\s{x) is small compared with A(x + vxt + nrow • vyt), (2.10) may be approximated as 

^ / y, r(x + vxt + nrow • Vyt,t)\  ? 
(2.11) 



where constants have been absorbed in T^- The interpretation of (2.11) is that the optimal detection 
procedure is to divide each sample by the variance of the noise, shift the data at the inverse of the 
velocity of the object to be detected, sum the shifted frames together, and subsequently perform 
a spatial correlation between the accumulated frame and the signal intensity. A computational 
disadvantage of this approach is that for a given false alarm rate, the threshold Ti in (2.11) is a 
function of the sum of the sample variances in the path, and, in general, must be recalculated for 
each path. 

If the background is assumed uniform, which is a good approximation for many cases of signal 
detection, then the weighting term in (2.11) may be deleted, yielding 

( N \   " 
2J \\s{x)Y^r{x + vxt + nrow-vyt,t)\ > T3. (2.12) 

X     \ t=l I 

The threshold T3 for a given false alarm rate is only a function of the total number of samples in 
the path, so it can be stored as a look-up table. If the noise is approximated as additive, white 
Gaussian noise and the signal as a dc offset, then a detector of the form of (2.12) also results. 
Covell [11] has explored optimal detection for mixed Poisson and Gaussian noise and found that 
the difference in sensitivity between (2.12) and a detector derived assuming mixed statistics to be 
negligible, less than a few tenths of a decibel. 

2.4    PROJECTION 

2.4.1      Optimum, Maximum Value, and Summation Projection 

By projecting multidimensional data onto a lower-dimensional space, the number of samples 
to process and possible signal patterns are both greatly reduced. Matched filtering on the lower- 
dimensional space may now become computationally feasible. The cost of the reduced computation 
is a reduction in detection performance compared to multidimensional matched filtering. The two 
schemes are shown schematically in Figure 2-2. 

The CCD noise model incorporates both Poisson and Gaussian noise sources. It is well known 
that the Poisson distribution converges to a Gaussian distribution for large counts [12]. We ap- 
proximate the combined addition of Poisson and Gaussian noise as purely Gaussian noise, thereby 
simplifying analysis. Since the optimal projection scheme for additive, white Gaussian noise has 
been derived in [17], it is merely defined in this paper. 

Using the same notation for the received data as in (2.1), denote the data as r(x, t),x = 
1,..., L, t = 1,..., N. For each x, the set of samples, {r(x, t), t = 1,..., N}, will be projected onto a 
single sample z(x). 

Those samples containing only noise are i.i.d. with probability density pnoise(r{x, t)), and those 
samples containing the signal and noise are i.i.d. with probability density, psig(r(x, t)). The set 
{r(x,t),t = l,...,iV} may include the signal in one sample, such as a modeling assumption met in 
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Figure 2-2.    Full-dimensional matched filter detection and projection followed by 
matched filtering detection block diagrams. 

applications where a small moving object is being detected. No other restrictions are required of 
the probability densities. Thus, the noise may be either multiplicative or additive and have any 
arbitrary distribution shape, e.g., Gaussian, Poisson, Rayleigh, or Laplacian. However, the reader 
is forewarned that a closed-form solution of the optimum projection scheme may not exist for many 
types of noise. 

The signal hypothesis is that a constant-intensity signal is present in the M sets {r(x, — )},x = 

Zi, Z2, ••••,1M- The optimal projection operator is 

z(x) = log 
r N psin(r(x,t)) 

_fT{Pnaise{r{x,t))_ 
(2.13) 

The projected samples are fed into a matched filter whose output is thresholded to decide whether 
or not a signal is present. 

£     z(z) > T. (2.14) 

For additive, white Gaussian noise, the noise probability density is 

Pnoise{r{x,t)) = -r(x,t)2/2 
2n 

(2.15) 

and for the samples containing signal 

Psi9(r(x,t)) = 
1 -(r(x,t)-5)2/2 

'2-K 
(2.16) 
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where S is the unprojected SNR of the signal. If (2.15) and (2.16) are substituted into (2.13), the 
projection function becomes 

z{x) = log 
N 

(2.17) 
i=l 

eS-r(x,t) 

ignoring a constant offset which has been absorbed in the threshold of the matched filter of (2.14). 

Optimal projection is cumbersome computationally because of the need to estimate the SNR 
of the object and evaluate transcendental functions (or represent these functions as look-up tables). 
When S in (2.17) is large (implying a large SNR), the particular r(x,t) which is largest in value 
will dominate the summation in (2.17), and the log operation will simply produce a value for the 
projected sample close to that of the largest r(x, t) so that 

z{x) w max[r(x, t), t = 1,..., TV] (2.18) 

giving rise to maximum value projection where the maximum value of a set of samples is the 
projected sample. 

Previous work on maximum value projection may be found as early as 1968 [13]. More recent 
works [6,14,15,16,5] have called this method of projection "ORing" and have studied its applica- 
tion toward reducing the amount of underwater acoustic data for visual observation by a human. 
Struzinski [6,14,15] has studied the performance characteristics of "ORing" using first and sec- 
ond moments and a Gaussian approximation to non-Gaussian distributions. This procedure does 
not supply enough accuracy for our application. Nuttall [16] explicitly (without approximations) 
calculated performance characteristics. Using Monte Carlo techniques, Bottomley [5] studied per- 
formance characteristics of maximum value projection when the noise was correlated. 

When S is small (relative to the noise standard deviation) in (2.17), the argument of the 
exponent S • r(x,t) will be small. Equation (2.17) may then be approximated as 

N 

z{x)^J2r{x,t). (2.19) 
t=i 

For additive, white Gaussian noise, the noise variance of the projected sample is N times higher 
than an unprojected sample, while the signal dc component is the same for both cases. Therefore, 
the SNR in the projected sample is degraded by 20\og10\/~N dB compared to the unprojected 
sample. 

2.4.2     Evaluation of the Projection Algorithms 

To decide whether or not a projection scheme followed by matched filtering is useful, its 
loss in performance compared to full-dimensional matched filtering must be known. For additive, 
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white Gaussian noise, suppose it is found that a certain unprojected input SNR is required to 
produce given probabilities of detection and false alarm using a full-dimensional matched filter. As 
described in section 2.3, this filter simply sums together the pixels in the full-dimensional space 
along an hypothesized velocity vector and checks to see if the sum exceeds a threshold. Then the 
loss in performance of a projection scheme followed by lower-dimensional matched filtering can be 
measured by finding the increase in the input SNR required for the projection scheme to produce 
equal probabilities of detection and false alarm. 

For the full-dimensional matched filter it is assumed that t, the location of the signal containing 
sample in the set being projected, {r(x,t),t = 1, ...,N}, is known, whereas in deriving the optimal 
projection scheme, t was hypothesized as being unknown. Using the additive, white Gaussian noise 
and constant signal models of (2.15) and (2.16), if the signal is present in M sets of {r(x, —)}, the 
SNR in decibels at the output of the full-dimensional matched filter is 201og10(vA/ SNRunpro;) 
where SNRunpro: is the unprojected input SNR in amplitude. If summation projection is im- 
plemented on the M sets with subsequent one-dimensional matched filtering, the one-dimensional 
matched filter output SNR will be 20 \og10(\/~KI SNRunpro;) -20 log10 v/iV , where N is the number 
of samples in the set being projected. Thus, for equal probabilities of detection and false alarm, 
full-dimensional matched filter detection requires an input SNR 201og10ViV dB lower than that 
required for summation projection followed by lower-dimensional matched filter detection. 

The projection loss using the optimum scheme of (2.17) was found using Monte Carlo simu- 
lations. To evaluate projection loss using maximum value projection, the computer was used to 
convolve and integrate the associated probability densities. 

In Figure 2-3 are plotted the losses in additive, white Gaussian noise of the three projection 
schemes of this paper as a function of the unprojected SNR for projections of 5 frames (t has 5 
values in r(x,t)). Shown in Figures 2-4 and 2-5 are the losses for 10 and 20 frames, respectively. 
Fortunately, the loss is a very weak function of probability of detection or false alarm but a very 
strong function of unprojected SNR. For optimum projection, the loss varies only 0.2 dB or so 
for probabilities of detection from 0.85 to 0.95 and probabilities of false alarm from 10~2 to 10-4 

(we were limited to evaluating a minimum pfa of 10-4 by a computational limit of about 106 

Monte Carlo runs). For maximum value projection, the curves vary a few tenths of a decibel for 
probabilities of detection from 0.85 to 0.95 and probabilities of false alarm from 10-2 to 10"10. 

Figures 2-3, 2-4, and 2-5 indicate that at high SNRs, the loss in performance of the optimum 
and maximum value projection schemes becomes small, while at low SNRs the loss is quite substan- 
tial. Because the loss of even the optimal projection scheme is too severe at low signal strengths, 
projection will only be useful at moderate signal strengths, i.e., greater than 6 dB or so. For this 
situation maximum value will deliver performance nearly identical to optimal projection but with 
significantly less computational complexity. 

Note that at SNRs higher than about 6 dB, maximum value is virtually equivalent to optimum 
projection in performance, while at SNRs around -6 dB, summation projection is roughly equivalent 
to optimum projection in performance. A graphical method of seeing these equivalences is to plot 
the decision boundaries for the three projection methods, as is done in Figure 2-6. For this example 
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Figure 2-3. Projection scheme input SNR increase, relative to full-dimensional 
matched filter input SNR, required to produce equivalent output detection statistics 
as full-dimensional matched filtering (5 frames). 

there are only two variables, x and y, with additive, white Gaussian noise and the signal may be 
present in only one of these variables. The optimal projection approach is to perform the following 

test for signal detection 

log( e
Sx + eSy^ > Tl (2.20) 

where S is the SNR. In Figure 2-6 are plotted three decision boundary curves for SNRs of -20, 

-6, and 6 dB (0.1, 0.5, 2 in amplitude).  Also in Figure 2-6 are the decision boundary curves for 
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Figure 2-4. Projection scheme input SNR increase, relative to full-dimensional 
matched filter input SNR, required to produce equivalent output detection statistics 
as full-dimensional matched filtering (10 frames). 

summation projection 

x + y > T2 (2.21) 

and maximum value projection 

max[x,y] > T3. (2.22) 
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The thresholds 7\, T2, and T3 have been adjusted to make the curves coincide at (3,-3) and (-3,3) 
in the plot. Clearly for the SNR of 6 dB, the decision boundary curve for optimal projection is 
quite close to the curve for maximum value projection; while for the much lower SNR of -20 dB, 
the curve is quite close to the summation projection curve. 

Another method of graphically seeing the differences between the projection algorithms is to 
the plot the projections for a simple data set. In Figure 2-7 are the summation projection, maximum 
value projection, and optimal projection of 9 frames of additive, normal Gaussian noise (standard 
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Figure 2-6.    Boundary decision curves for maximum value projection, optimal projec- 
tion, and summation projection. 

deviation of one). The signal has a constant SNR of 14 dB (5 in amplitude), occupies one sample 

in each of the frames, and moves one sample per frame. 
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Figure 2-7. Summation, maximum value, and optimal projection of 9 frames, addi- 
tive, white, normal Gaussian noise, signal occupies one sample with SNR 14 dB (5 in 
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Note the clarity with which the projected signal track may be visually discerned in the maxi- 
mum value projection compared to the conventional summation projection. Also note how close 
maximum value projection is to optimal projection for this example. 

2.5    NORMALIZATION BY MEAN AND STANDARD DEVIATION 

The pixel charge r(x, t) is converted to a voltage and then to a digital number. The conversion 
factor is a, such that for an increment of a electrons in the pixel charge packet, the A/D output 
is incremented by 1 bit as shown in Figure 2-8. If r'(x, t) is the A/D output for the pixel charge 
r(x,t) then 

r'(x,t)=>r{x,t)/a. (2.23) 

Equation (2.23) is not strictly true since the result of the division must be rounded up or down 
to an integer value. The difference between the integer value and the real value of the division is 
the quantization error of the converter. As long as this error is somewhat lower than the inherent 
noise of the pixel voltages, it can be ignored. As described in section 4.2.1, the maximum value 
projection along the time axis of the input data is taken 

z(x) =  maximum value of [r'(x, t),t = l,..., N}. (2.24) 

To further reduce the amount of data to process, the maximum value projection will next be 
binary quantized with a constant threshold. The probability of each noise-only pixel exceeding the 
threshold must be equal. In an attempt to achieve this equality all maximum values have their 
means subtracted out and are divided by an estimate of their standard deviation, as shown in 
Figure 2-1. 

CCD w     ELECTRON w ^v^ w     DIGITAL 
^       CHARGE ^       Ma^~ ^   NUMBER 

A/D CONVERTER 

Figure 2-8.    Electron charge to digital number conversion by the A/D converter. 

While the mean is easily estimated for each location, estimation of the standard deviation is 
complicated by the presence of nonmoving objects (stars, galaxies, etc.) with jitter. Two meth- 
ods are used to estimate the standard deviation. The first method assumes a Poisson (for the 
background illumination and dark current) plus Gaussian (for the circuit noise) model and derives 
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the standard deviation from the mean. The second method is a more heuristic approach which is 
sensitive to the presence of nonmoving objects. If the second method yields a standard deviation 
estimate that is substantially larger than the first method, the standard deviation of the second 
method is used. Otherwise, the estimate of the first method, which has much more accuracy and 
less variance, is used. If the first method alone were used to estimate the standard deviation, good 
detection performance would be possible for uniform backgrounds, but the presence of clutter would 
produce many false alarms. If the second method alone were used to estimate standard deviation, 
clutter would not produce false alarms, but the detection sensitivity for uniform backgrounds would 
be poor. 

The mean is estimated by 

—,  , 1 
mean J   = 

N -I jV(x,t)-*(*))• (2-25) 
Kt=l 

The estimate of the mean in (2.25) has the maximum value subtracted off as this maximum value 
may be the signal we are trying to detect. The resulting estimate is biased slightly lower than the 
actual value of the mean. Note that when N = 2 in (2.25), the estimate of the mean amounts to 
taking the minimum of two values at a given location. 

After (2.25) is computed it is subtracted from the maximum value 

z'{x) = z{x) - mean (x). (2.26) 

The standard deviation at a given location may be derived directly from the mean calculated 
in (2.25) if the major contributors to the pixel voltage at a given location are Poisson, Gaussian, 
and signal sources. The mean value of the charge is a times larger than the mean value as estimated 
in (2.25) because of the A/D converter 

mean value charge (x) = a •  mean (x). (2.27) 

Since the Gaussian and signal sources do not contribute to the mean (x), the charge mean value 
in (2.27) is the mean value of the Poisson component only. Therefore, the variance of the Poisson 
charge component is 

Poiss. variance(x) = mean value charge (x). (2.28) 

The variance of the Poisson component at the output of the A/D converter will approximately be 

Poiss. var. at A/D out (x) =  Poiss. variance(x)/a2. (2.29) 

Combining (2.27). (2.28), and (2.29), the Poisson variance at the output of the A/D converter is 
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Poiss. var. at A/D out (x) —  mean (x)/a. (2.30) 

The variance at the A/D output due to the Gaussian component is known since it is a fixed constant, 
unchanging with time and constant with pixel position 

Gauss, var. at A/D out (x) = a2/a2 (2.31) 

where a is the standard deviation of the circuit noise as defined in (2.3). Since the Poisson and 
Gaussian components are independent random processes, the total variance at the A/D output is 
simply the sum of the variances of each component. Therefore, using (2.30) and (2.31), the total 
standard deviation of the A/D output is 

stdvi(x) = yj rnean(x)/a + cT2/a2. (2.32) 

If a nonmoving object contributes a significant portion to the pixel voltage, then the standard 
deviation will usually be much higher than that predicted by the Poisson and Gaussian models. To 
avoid the error this creates, a second method of estimating standard deviation is as follows 

stdv2(x)    =    0.5 • ( max2[r'(x,£),t = 1,..., N] - 

min[ mean (x — 1), mean(x), mean (x + 1)]) (2.33) 

where max2 denotes the second highest value of the set of r'(x,t) and min denotes the minimum 
of the three estimated means. Expression (2.33) has experimentally been found to work well for a 
wide variety of looks and frame numbers from 2 to 16. Its rationale is as follows. 

If the pixel at location x has statistics that fit the Poisson and Gaussian model, the implication 
is that neighboring pixels will have similar statistics. Therefore, the minimum of the mean values of 
the 3-pixel window will be close to the true mean at location x. The difference between the second 
highest value and the mean of a population is an estimate of the standard deviation. This method is 
somewhat noisier but more computationally efficient than the more conventional approach toward 
finding standard deviation in which the difference between the sum of squares and the squared sum 
is taken by the following. 

stdv,. .(*) = \ 
Uli r'(x, 02 - z(x)2 - (l/N) (£?=! r'(x, t) - z(x)) 

V     '—.       (2.34) 
N -\ 

Nonetheless, the method of (2.34) works well in normalizing the projection if the number of frames 
AT is greater than 7. If the number of frames is less than 7 there are not enough temporal samples in 
a given location to get a good estimate of the standard deviation, and the method of (2.33), which 
uses information about samples in neighboring locations, must be used to adequately normalize 
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the projection to prevent false alarms. For the case of a uniform background, (2.33) will simply 
be a less accurate estimate of the standard deviation of the pixel at location x than (2.32). Since 
moving objects (at high SNR) only affect maximum values, they will have no influence on (2.33). 

On the other hand, if a nonmoving object is at location x, the statistics between location x and 
its neighbors will be quite different. In this case it is likely that the mean value of a neighboring 
pixel will be far less than the mean value at x, therefore (2.33) will yield a large value. 

If stdv2 of (2.33) is twice as great as stdvi of (2.32), then the estimate stdv2 is used to normalize 
z'{x) of (2.26) 

z"(x) = z'{x)/ stdv2, (2.35) 

otherwise, 

z"(x) = z\x)l stdvi. (2.36) 

The array z"(x) is binary quantized and sent to a binary streak detector. 

The method of (2.33) for obtaining standard deviation estimates is heuristic and therefore 
must be validated experimentally. This has been done, as discussed in section 3.6. 

2.6    PAIRWISE BINARY QUANTIZATION 

In single sample binary quantization, a "1" is assigned to a location x if the sample voltage 
at that location exceeds a threshold. While this is computationally efficient, a detection loss 
results which is a function of the threshold setting and the signal SNR. This detection loss may be 
significantly decreased by pairwise binary quantization. 

Pairwise sums of the sample values are found about each location x. If any of these pairwise 
sums exceeds a threshold, then a "1" is assigned to location x. A "0" is assigned to location x 
otherwise. More precisely, 

b{x) = l if z"(x) + z"(x + l) >T 

or z"(x) + z"(x + 1 + nrow) > T 

or z"(x) + z"(x + nrow) > T 

or z"(x) + z"(x — 1 + nrow) > T 

b(x) = 0 otherwise (2.37) 

where nrow is the number of elements in a row of the image. If a streak goes through location 
x the signal will be present in both samples of at least one of the pairs of (2.37).   The pairwise 

24 



sum will have an SNR 3 dB higher than that of a single sample. Therefore, for a fixed false alarm 
probability, the probability that the x location will be assigned a "1" when a signal is present will 
be higher than for single sample binary quantization. Roughly a 2-dB (20 percent in amplitude) 
increase in sensitivity results from using the binary quantization technique of (2.37) versus single 
sample thresholding for one percent of the samples set to "1." Because of the regularity of the 
operations in (2.37), it is easily implemented in hardware. 

The total number of "1" pixels in the binary image has a large impact on the processing time 
of all subsequent processing as well as the detection sensitivity of the algorithm. To maximize 
sensitivity given processing time constraints, the binary threshold is set to pass a selected number 
of "1" pixels with the aid of a histogram. In this manner the number of "1" pixels retained 
for detection processing is as high possible while not exceeding the limit imposed by post-MTI 
processing time constraints. 

2.7     SUMMARY OF MTI STEPS 

In this section the six steps of the MTI filter are briefly summarized. 

1. Find the maximum value projection of the frames 

z(x) =  maximum value of [r'(x,t),t = 1,..., N]. (2.38) 

2. Find second highest value of the frames 

max2(x) =  second highest value of [r'(x,t),t = 1, ...,JV]. (2.39) 

3. Find the mean value of the frames without the maximum 

mew(x) = ^^ (T r'(x, t) - z(x)\ . (2.40) 

4. Subtract off the mean value from the maximum value 

z'{x) = *(*) -  mean (x). (2.41) 

5. Divide the maximum value by the estimated standard deviation. First find the standard 
deviation via method 1 

stdvi(x) = J mean(x)/a + a2/a2. (2.42) 
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Then find the standard deviation via method 2 

stdv2(x)    =    0.5 - (max2[r'(x,t),t = 1,...,N] - 

min[ mean (x — 1), mean (x), mean(x + 1)]). (2.43) 

If stdv2(x) is greater than 2 •  stdvi(x) 

z"(x) = z'(x)/ stdv2 (2.44) 

otherwise, 

z"(x) = z'(x)/stdvi. (2.45) 

(6) Binary quantize the normalized MTI output 

b(x) = 1 if z"(x) + z"{x + l) >T 

or z"{x) + z"{x + 1 + nrow) > T 

or z"(x) + z"(x + nrow) > T 

or z"(x) + z"(x - 1 + nrow) > T 

b(x) = 0 otherwise. (2.46) 

In Figure 1-2 are shown the first and last frames of a 16-frame set of 420 x 420-pixel CCD 
data, in which a fast and a slow satellite are present. Figure 1-2 also shows the binary quantized 
MTI output and the resultant detected streaks. 

2.8    DETECTION OF OBJECTS AMID MOVING CLUTTER 

Assume the telescope is not in sidereal track, so that the background clutter (stars, etc.) 
appears to be moving. This situation may arise if the object is being tracked by the telescope, 
so that the object appears stationary on the focal plane. Filip [22] has suggested how the MTI 
algorithm may be slightly modified to reject clutter with known, nonzero velocity while allowing 
legitimate moving objects to appear in the output. 

As the data enter the MTI filter the pixel x location coordinate for each frame has an offset 
subtracted from it which is a function of the frame number t and the distance in the vertical and 
horizontal directions that the clutter moves from the beginning of one frame to the beginning of 
the next frame. The clutter movement is known because it is a function of the mount movement 
which is under control of the data processor. Denote the horizontal distance as dh and the vertical 
distance as dv measured in units of pixel widths. Then for frame t the offset is 
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offset(£) = nrow • integerfi • dv] + integer[£ • d/J (2.47) 

where the integer [ ] operation is defined as finding the closest integer to the continuous argument 
(i.e., no interpolation is used) and nrow is the number of pixels in a row on the CCD. The effect 
of this subtraction is that an object like a star will appear to be a stationary streak with as much 
as a half-pixel frame-to-frame jitter. The length of the star streak will be determined by the frame 
integration time. The MTI filter will suppress the clutter. The clutter suppression is illustrated in 
cartoon form in Figure 2-9 for both object track and sidereal track modes (which was described in 
sections 2.1 through 2.6). 
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Figure 2-9.    Clutter suppression for sidereal track and object track modes of the tele- 
scope mount. In the figure, "S" denotes a star and "T" denotes a moving object. 
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When the maximum value projection is found, the frame number of the maximum value at 

each location is saved in memory. After the binary quantization step, the frame number is used to 

reshift the address of each binary pixel back to where it would be if no offsets had been subtracted 

from the pixel coordinates at the MTI filter input. The post-MTI streak detection, discussed in 

section 3, may then take place. A block diagram of the algorithm is shown in Figure 2-10. 

In Figure 2-11 are pictures showing intermediate steps in the algorithm using an actual streaked 

starfield with simulated targets. The data consist of 8 frames of 420 x 420-pixel CCD data taken 

from Lincoln's test site in Socorro, New Mexico. 

3-D 
INPUT 
DATA 

SHIFT AT 
INVERSE 

OF ASSUMED 
VELOCITY 

OF CLUTTER 

DSS 
MTI 

FILTER 

SHIFT BINARY 
ADDRESSES BY 

ASSUMED VELOCITY 
OF CLUTTER 

DSS 
POST-MTI 

PROCESSOR I 

Figure 2-10.    Block diagram of how MTI filter algorithm could be used to reject clutter 
moving at a known velocity. 
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Figure 2-11.    Intermediate steps in the block diagram of Figure 2-9 for actual data of 
8 frames of 420 x 420 pixels with added simulated moving objects. 
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3.   THE POST-MTI PROCESSOR 

3.1    INTRODUCTION TO THE POST-MTI PROCESSOR 

The post-MTI processor's input is a list of addresses where "1" pixels occurred in the binary 
quantized, normalized, maximum value projection of the MTI filter. Nominally, the binary thresh- 
old is set so that at most 1 percent of the 420 x 420 samples of the projection exceed the threshold, 
so that the list will consist of less than 2000 addresses. The post-MTI filter also has access to 
memories in the MTI processor which contain the full-precision, normalized maximum values and 
associated frame numbers during which the maximum value occurred. 

As shown in Figure 3-1, the post-MTI processor performs the detection in a two-stage, "nomi- 
nator-confirmer" procedure. The first stage searches for line segments of binary addresses, in 
effect, performing a binary matched filter search of all velocities. This procedure is computationally 
efficient but suboptimal in detection performance. The first stage serves to "nominate" streak paths 
which look like they may actually contain signal. The computationally expensive second stage 
"confirms" the nominations of the first stage by recalling the full-precision, normalized maximum 
values along the candidate paths, and summing these values (performing a full-precision velocity 
matched filter test). If the sum exceeds a threshold, the candidate path is declared legitimate, 
otherwise, the path is rejected. If the path is legitimate, the frame numbers along the path are 
recalled and used to estimate the speed of the moving object via linear regression. The angle of 
the object's movement is determined by the endpoints of the path. 

In section 3.2 we discuss this "nominator-confirmer" philosophy, identical to multistage de- 
tection used in radar and sonar systems [18]. Section 3.3 is concerned with the theoretical basis 
and implementation of binary velocity filtering. "Analog" (or finely quantized) maximum likeli- 
hood streak path estimation is covered in section 3.4. The calculation of object speed via linear 
regression is explained in section 3.5. In section 3.6 measurements of metric accuracy and detection 
sensitivity of the algorithm are presented. The steps of the algorithm are listed in outline form in 
section 2.7. 

3.2    NOMINATOR-CONFIRMER TWO-STAGE SIGNAL DETECTION 

Suppose we are given many vectors, and we would like to select those vectors containing signal 
and reject those vectors containing solely noise. With known signal and noise parameters, the 
optimal detector may be derived. However, this function may be computationally too expensive to 
implement. 

The computational expense of good detection algorithms can be mitigated by using crude 
detection algorithms to eliminate vectors from the data set that are obviously bad candidates for 
containing the signal. Once this is done the expensive detection procedure only has to be executed 
on the remaining vectors, which may be much smaller in number than the original data set.   In 
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Figure 3-1.    Block diagram of post-MTI processor. 
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this manner the bulk of the computational load may be transferred from the optimal detector to a 
crude detector. 

3.2.1     Bounds and Optimality of the Nominator-Confirmer 

In this section, bounds on the probability of detection pd and probability of false alarm pja of 
the two-stage system are presented in terms of the individual nominator and confirmer pd and p/a. 
The nominator is a suboptimal, computationally cheap detector, while the confirmer is the optimal 
detector. 

Assume we have a set of vectors Rk,k = l,...,K. The vector R^ is either a noise vector or 
a signal vector. In the nominator-confirmer scheme shown in Figure 3-2, the initial data set has 
K vectors. After nomination, the number of vectors is reduced to L, and, finally, after optimal 
selection, the number of remaining vectors (detections) is M. If L is, for instance, one-hundredth 
of K, then the confirmer will have to process only one-hundredth of the data that it would process 
if it were operating in isolation. 

Rj.,ks1,...,K NOMINATOR|-— R.J =1,...,L—   CONFIRMER h 
ffm,m*1,...,M •fTJ 

Figure 3-2.    Nominator-confirmer configuration for signal detection. K > L > M. 

Lower and upper bounds on the probability of detection of the entire system are 

Pd(system)    >    pd(confirmer) — (1 — p<f(nominator)) 

Pd(system)    <     min[pd(confirmer),p(i(nominator)]. (3.1) 

The upper bound of (3.1) follows because the nominator and confirmer can only eliminate signal 
vectors from consideration, not add additional signal vectors. The lower bound results from the 
worst-case assumption that those signal vectors that the nominator rejects would have passed 
through the confirmer if it were operating in isolation with all K vectors as input. Under this 
worst-case assumption, pd of the confirmer is reduced by the probability that the nominator will 
miss a signal vector 1 — pd(nominator). If the nominator and confirmer are at all similar in the way 
they choose signal vectors, this worst-case lower bound wjll never be attained. 

The upper bound on the p/a of the entire system is 

p/a(system) < min[p^a(confirmer),p/a(nominator)] (3.2) 
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where the pfa (confirmer) is referenced to the initial data set, not the reduced data set. The bound 
results because the nominator and confirmer can only reject noise vectors, not add additional noise 
vectors. 

Using the bounds of (3.1) and (3.2) it is easy to show how nearly optimal performance can 
be obtained by this two-stage approach while achieving huge reductions in computational cost. 
Assume the optimal detector is the confirmer working in isolation, as shown in Figure 3-3, where 
all K data vectors are operated on directly by the confirmer. For example's sake, assume that the 
Pd of the optimal confirmer has been set to 0.99 while the p/a is 10~6. Now suppose we precede 
the confirmer stage with a nominator stage which has a pd of 0.99 and pja of 10-2. The nominator 
stage is suboptimal and therefore has a substantially higher pfa than the confirmer stage for equal 
Pd- The confirmer of this system will operate on one-hundredth of the vectors it would operate 
on in the single-stage system. According to the bounds formula, the pd of the two-stage system 
is > 0.98 with pja < 10-6. Thus, compared to the optimal detector, the worst-case performance 
loss of the two-stage system is only 1 percent in probability of detection. This slight reduction 
in detection sensitivity is well worth the possible hundred times decrease in computational cost 
(depending on the computational complexity of the nominator). 

"t, k =1,..., K' CONFIRMER]-^- »m.m=l,...,M 

Figure 3-3.    Optimal detector: the confirmer in isolation. 

3.2.2      Application of the Nominator-Confirmer to Streak Detection 

The MTI filter projects the time sequence of data onto a single frame. The optimal streak 
detection method for the projected data is to feed the projected frame through a full-precision 
matched filter. This matched filter involves summing up projected data values along all possible 
streak paths (velocities) and comparing these sums to a detection threshold. Because there are 
so many paths to consider, the full-precision matched filter is difficult to implement [21]. Instead, 
the nominator-confirmer approach is employed. Each possible streak path in the projection is 
considered a vector which may contain signal. The frame is first binary quantized and fed through 
a binary matched filter, which is the nominator stage. The binary matched filter essentially counts 
how many "1" pixels are in each candidate path or vector. If the count is greater than a threshold 
which is a monotonically increasing function of the path length, a streak is declared present, and the 
full-precision amplitude data associated with the streak path is retrieved. Next, all paths declared 
as having streaks present are confirmed or rejected by comparing the sum of the full-precision 
amplitude values along the path to a second threshold, constituting the optimal confirmer stage of 
the algorithm. 
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The detection performance of this two-stage system is within 0.5 dB of optimal. In fact, even 
if binary matched filtering were the only basis for detection, the detection loss, which has been well 
studied in the literature [19,20], would be approximately 2 dB (under Gaussian noise assumptions). 

3.3    TWO-DIMENSIONAL BINARY VELOCITY FILTERING 

The binary matched filter is computationally efficient primarily because it involves operations 
only on "1" sample locations which are nominally set to 1 percent of the total number of samples. 
Even with the number of "1" samples set to this low a percentage, the loss compared to unquantized 
matched filtering is only about 0.5 dB (assuming pairwise binary quantization is employed in the 
MTI filter). The structure of the binary matched filter is shown in Figure 3-1. The heart of 
the algorithm is a very computationally efficient one-dimensional matched filter algorithm which 
essentially can detect vertical or horizontal streaks. To detect streaks at arbitrary angles, the binary 
image is skewed at equally spaced angles. The result is that detectable portions of streaks at any 
angle become horizontal or vertical. The skewing procedure is particularly efficient (compared to 
rotation) because it involves only one addition per binary point and a modest sized table. 

3.3.1      Angle Search 

The binary matched filter search involves first skewing the binary image so that streaks become 
vertical or horizontal and then doing a one-dimensional binary matched filter search on the vertical 
columns or horizontal rows of "1" samples. This skewing procedure must be repeated for enough 
angles so that the probability will be high that sections of all streaks of interest become vertical or 
horizontal for one of the skew angles. The location of the "1" samples is stored in memory. These 
locations are then transformed to present skewed versions of the binary image, so that streaks are 
distorted to become vertical or horizontal. A range of 90 degrees in streak angle is covered by the 
following transformation of the "1" sample x,y location 

•Eneui     —     %old T Void ' J 

Vnew     =     Void 

(3.3) 

where / = tan#, —45° < 6 < 45°. After the transformation vertical columns of "1" samples are 
fed into a computationally efficient one-dimensional binary matched filter streak detector (to be 
discussed later). 

To cover the remaining 90 degrees of possible streak angle, the following transformation is used 

Vnew     =     Void + X0ld ' 9 
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%new     —     Zold 

(3.4) 

where g = tan(0 — 90°), 45° < 9 < 135°. Horizontal rows of transformed "1" samples are fed to 
the one-dimensional streak detector. In (3.3) and (3.4) fractional values for the new coordinates 
are rounded to the nearest integer. 

Since the angle of the streak is unknown, the transformations of (3.3) and (3.4) and subsequent 
one-dimensional streak detection on rows or columns must be repeated for all possible angles. The 
number of computations required for the algorithm is directly proportional to the number of skew 
angles. Therefore it is important to use as few skew angles as possible while maintaining desired 
detection sensitivity. We have performed extensive Monte Carlo simulations to find the worst-case 
detection loss as a function of streak length and number of angles. The worst-case loss occurs when 
a streak's angle is halfway in between two of the skew angles. The loss is relative to the case where 
streak angle is coincident with a skew angle. In Figure 3-4 plots are shown for the case where the 
Gaussian-shaped point spread function of the telescope has a standard deviation equal to 0.2-pixel 
widths. In Figure 3-5 the same plots are shown for a wider point function where the standard 
deviation equals 1-pixel width. As might be expected, if the streaks are skinny (relative to the 
pixel width) the worst-case detection loss is far greater than when they are fat. Related analytical 
studies may be found in [21]. 

The algorithm uses 20 skew angles, which, as Figure 3-4 shows, are sufficient to detect skinny 
streaks from 2 to 40 samples in length at arbitrary angles, with a worst-case loss of 1.5 dB in 
sensitivity compared to using an infinite number of skew angles. 

A look-up table may be used to find y0\& • f in (3.3) and x0id • g in Equation (3.4), eliminating 
the need for any multiplies in the skewing procedure. For a 420 x 420-pixel CCD array, 420 look-up 
table entries are needed for each angle of image skew, implying that for 20 angles, 8400 look-up 
table entries are needed. However, by taking advantage of symmetries in the skewing procedure, 
the look-up table memory may be reduced by a factor of 4 to 2100 entries. 

3.3.2     Speed Search 

In the preceding section we described the skewing process used to search among a set of velocity 
vector angles. In this section computationally efficient method of searching through candidate 
speeds is described. 

The candidate speed search is implemented via a one-dimensional binary matched filter search 

Y,b(k)>T(L) (3.5) 
fc=i 

where T(L) is a threshold which is a monotonically increasing function of streak length which is 
set to achieve as constant a false alarm rate as possible and the b(k) are those binary samples in an 

36 



-0.5   — 

CO 
•a, 

in 

8   1 
_i 

E 
Z 
</) 

-1.5 

-^* 

/ / 

6    / # %     10-PIXEL STREAK LENGTH 

Q- O     20-PIXEL STREAK LENGTH 

40-PIXEL STREAK LENGTH 

20 40 60 80 100 120 140 

NUMBER OF ANGLES OF SKEW 

160 180 200 

Figure 3-4. Worst-case streak SNR loss in decibels as a function of the number of 
angles used in the skew. Point spread standard deviation equals 0.2 pixels (10 frames 
projected). 

L sample candidate streak path. The threshold T(L) may be determined by the classical binomial 
formula 

V 
pfa (streak) =     £ , 

i=T(L) + l   'V '' 
PnoiseK'-       Pnoise) 

L-i (3.6) 

where pnoise is the probability that a pixel containing noise alone is "1," and p/a(streak) is the 
probability of false alarm for detection of a streak in the L pixel path. If T(L) is exceeded the 
full-precision maximum value projection voltages from the samples along the path are recalled 
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Figure 3-5. Worst-case streak SNR loss in decibels as a function of the number of 
angles used in the skew. Point spread standard deviation equals 1 pixel (10 frames 
projected). 

and summed together, thereby implementing a full-precision matched filter for the assumed streak 
length and orientation (velocity vector). If this full-precision sum exceeds a second threshold, a 
streak is declared present. The full-precision matched filter confirms the binary detection and is 

necessary to reduce the probability of false alarm of shorter streaks, where even if all b(k) in (3.5) 

are required to be "1" for detection, the false alarm rate is too high. 

The test of (3.5) is applied only to candidate streak paths having "1" samples at their endpoints, 

because, as shown in Appendix A, 

1. If any streak path will exceed the threshold, a streak path with "1" samples at 
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its endpoints will do so. 

2. From a binary maximum likelihood point of view, the binary data are more 

likely to have been caused by streaks which happen to have "1" samples at 

their endpoints versus streaks which have a "0" sample at either endpoint. 

The one-dimensional binary matched filter is computationally efficient, requiring M(M+l)/2 addi- 

tions and comparisons where M is the number of "1" samples in the line. The following example 
illustrates the one-dimensional search algorithm. 

Consider a row of eight samples: 

00110001. (3.7) 

First, the binary data are coded in terms of the distance between neighboring "1" samples, except 

for the first "1" sample which is coded in terms of its distance from the start of the row. The 

resulting code for the sequence of (3.7) is 3 (position of the first "1" sample), 1 (distance between 

the first and second "1" sample), and 4 (distance between the second and third "1" sample). Denote 
the coded version of the sequence as 

di,...,d,M (3.8) 

where M is the number of "1" samples. Next, the distances of (3.8) are summed up in different 

ways to test for the presence of a streak 

E< T(I — J + 2)     declare streak present 
dk{ (3.9) 

-,      [ otherwise declare streak absent 

for 2<J<M, J<I<M. I and J are dummy variables. The term on the left-hand side of (3.9) is the 

length of the hypothetical streak (target speed), while I-J+2 is the number of "1" samples in the 

streak. The threshold function T(I-J+2) is chosen to give as constant a false alarm rate as possible, 
using the formulation of (3.6). For short streak lengths, the false alarm rate may be too high even 

with the threshold set so that all pixels in the path must be "1." For these cases, the false alarm 
rate can be lowered by testing the sum of the full-precision voltages along the path for the declared 

streaks. 

As shown in Figure 3-1, the detector will output several candidate streaks.  The final step of 

the algorithm involves picking the best candidate by picking the one whose path maximizes 

1     L 

-= 5>"(x)-mean) (3.10) 
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where the z"(x) values in (3.10) are those normalized maximum value projected samples along the 
path of the streak (as defined in (2.35) and (2.36), section 2.5), and "mean" is the mean of the 
maximum value projected voltage for the noise only hypothesis. The rationale for using (3.10) is 
discussed in the next section. 

The large majority of rows or columns may be excluded from consideration by a suboptimal 
preselection technique. As each skewed row or column is created, a count is kept of adjacent "1" 
samples. Two or more adjacent pairs of "1" samples must occur in the row or column before 
one-dimensional matched filtering is performed; otherwise, the signal is declared absent from the 
row or column. Only about a tenth of the rows or columns pass this test. On the other hand, if a 
streak is present in the line of data whose probability of detection is 0.95 without the preselection 
technique, then the probability of two or more adjacent "1" sample pairs is approximately 0.99 
or so. The probability of streak false alarm is unaffected by this preselection technique while the 
probability of detection is, at worst, decreased by 1 percent. The number of computations needed 
to do the binary matched filtering is reduced by a factor of 10. 

The number of computations needed for the binary velocity filter search is reasonable because 
a small percentage of the pixels have been set to "1." As the number of "1" samples increases, 
the computational cost increases, but the detection performance improves. Therefore, to obtain 
maximum sensitivity while staying within the limits of computational costs, a histogram is used 
to set the percentage of "1" samples as close as possible to an upper bound. This ensures that 
the processor will never be overloaded by an overabundance of "1" pixels even if many streaks are 
present, or there is clutter movement due to errors in the mount tracking system. 

We have implemented the entire algorithm on a FORCE Motorola 68020 single board computer. 
With a 420 x 420-pixel image, the binary quantizer adjusted to pass one percent of the samples, 
and 20 angles of skew, all algorithm operations following the binary quantization are executed in 
0.3 s real time with no streaks present. With streaks present, the run time increases, as shown 
in Figure 3-6, which contains benchmarks for the entire post-MTI process executed on a 68020 
FORCE board for one to four streaks of 3-pixels width and different lengths. Note that even with 
four streaks of 400-pixels length, the total processing time is still on the order of a second. Also, 
note that the processing time decreases as the streak length is extended from 300 to 400 pixels for 
four streaks. 

The processing time decrease is a by-product of the histogram process used to set the binary 
quantizer threshold. The top 1 percent of the 420 x 420 pixels with the largest amplitudes will be set 
to "1." These 1,764 pixels will be apportioned equally among four equal strength 400-pixel streaks, 
resulting in a binary image of four 400-pixel streaks of mostly single pixel width. However, when the 
1,764 pixels are apportioned among four 300-pixel length streaks, there are enough pixels available 
to produce binary images for these streaks with multiple pixel widths for substantial sections of 
the streaks. Because the binary image of the streaks is wider for the 300-pixel streak length case 
than the 400-pixel streak length case, there are more candidate streak paths in the 300-pixel streak 
length case. The processor must spend extra time performing detection and likelihood tests for 
these extra candidate streak paths. 
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Figure 3-6.    Post-MTI run time versus streak length. Streak has 3-pixel width corre- 
sponding to point spread function of bright satellite. 

The post-binary quantization operations are few in number compared to those required to 
perform the pre-binary quantization operations, maximum value projection and pairwise sample 
summation. However, the latter operations are readily amenable to parallel, fast special-purpose 
hardware because of their simplicity and regularity. On the other hand, the binary matched filter 
search is comparatively complicated and must be implemented on a general-purpose processor. 

3.4    FULL-PRECISION MAXIMUM LIKELIHOOD PATH ESTIMATION 

The pixel charges are converted to 12-bit quantities by an A/D converter. The quantization 
noise can be ignored because it is much less than the standard deviation of the circuit noise. There- 
fore, for ease of analysis, we can assume the representation of the pixel voltages to be continuous 

in the processor. 
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The detector may output several intersecting streak path candidates for each actual streak 
present on the focal plane, since the signal samples will be included in many hypothetical streak 
paths. This potentially increases the sum of the maximum values in those paths enough to exceed 
the detection thresholds. The path whose full-precision voltages produce the maximum likelihood 
probability is the one picked to represent the actual streak path. 

Denote the full-precision, normalized maximum value projection samples as z"(x). The prob- 
ability density of z"(x) under noise and signal hypotheses is complicated. To derive analytically 
tractable results, we shall approximate the noise as being additive, white Gaussian with known 
mean and the signal as being simply a dc offset. If a streak with constant SNR S (difference of the 
signal and noise means divided by the standard deviation of the noise), pixel length L, and start 
position at sample K, is present then the probability distribution of an individual sample in the 
set z"(K), z"{K + 1),..., z"{K + L - 1) is 

p(z"(x)) = -L c-(*"(*)-S-mean)*/2 (3.H) 
V 27T 

where "mean" is the mean of the noise.  The probability distribution of a sample not containing 
the signal is 

p(z"(x)) = -$= e-(*"(*)-mean)V2. (3.12) 
V27T 

Using (3.11) and (3.12), the joint probability that all the data are caused by a streak of parameters 
K and L is 

K + L-l 
p(z"(l),z"(2),...|K,L) =    A    -j= e-(^'(x)-s-mean)V2j|    1   e-(!"(i)-mean)2/2   (3 13) 

x=K     V j^x V 

If S in (3.13) is unknown, the most likely value of S is 

, K+L-l 
S=-    J2   (*"(*)-mean). (3.14) 

Li 
x=K 

If (3.14) is substituted into (3.13), then after some algebraic manipulation and taking logarithms, 
it can be shown that 

K, L that maximizes p(z"(l), z"(2), ..\K, L) 

j    K+L-l 

= K,L that maximizes —p=    YJ   (z"(x) _ mean). (3.15) 
x=K 
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Thus, among intersecting detected streaks, the one whose path maximizes (3.15) is chosen to 
represent the actual moving target. 

While the measure of (3.15) is based on a crude Gaussian approximation, it has been found 
to produce accurate metric parameter estimates of real satellites. Some insight may be gained into 
the robustness of (3.15) by examining the case where (3.15) is used to pick one of two paths to 
represent the streak, a path of L pixels or the same path extended by one pixel to length L + 1. 
The longer path will be picked if 

i        L+i -,      L 

rj——r Yi W*) ~ mean) ^7?E (2(X) ~ mean) ' (3-16) 

Multiply both sides of (3.16) by y/L + 1 

L+l I Y    L 

2J (z(x) - mean) > Wl + — Y^ {z(x) - mean). (3.17) 
i=i i=i 

Next, using the approximation that \/\ + 6 % 1 + 6/2 (3.17) may be rewritten as 

L+l -.        L 

Y (z{x) - mean) > (1 + —) V {z{x) - mean). (3.18) 
1=1 2L    x=l 

Now let S denote the sum of the pixels in the path of length L so that 

L 

s = Y< (2(x) - mean) • (3-19) 
i=i 

Combining (3.18) and (3.19) 

5 + (2(L + l)-mean) > (1 + ^-)5. (3.20) 

Finally, subtracting 5 from both sides of (3.20) yields 

z{L + 1)-mean >]-{j). (3.21) 
1    Li 

The left-hand side of (3.21) is simply the maximum value minus the mean of the L + 1 pixel, while 
the right-hand side is half of the average value of the L pixels common to both candidate paths. 
Therefore, the interpretation of (3.21) is that a path will be extended by a pixel if that pixel's 
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amplitude is greater than one-half of the average value of the pixels already in the path.   This 
interpretation makes much sense heuristically. 

If the angle of the streak doesn't coincide exactly with one of the 20 skew angles, the skewed 
streak will not align precisely with a row or column, and only a section of the actual streak will be 
detected for the skew angle. A line extension algorithm tries to extend the path of a detected streak 
in the skewed domain to adjacent columns based on the criterion of (3.15). If (3.15) is increased 
by the path extension, then the path is extended. 

Occasionally a rotating rocket body may produce streak segments on the focal plane which 
are colinear but separated. Therefore, all estimated paths are checked for colinearity against each 
other. The time tags of those paths which are colinear are recalled and linear regression is used to 
see if the paths form a line in distance versus time space. If so, then the colinear paths are joined 
together and regarded as a single path. 

Another potential anomaly is the occurrence of "glints" from dim rotating satellites. What is 
detected of the satellite are short, widely separated streak segments occurring in single frames as 
the satellite crosses the focal plane. Any single flash is not discernible from a cosmic ray hit. The 
algorithm looks at line paths formed by pairs of these segments. If three or more segments occur 
on a line path and the recalled time tags of the segments define a line in distance versus time space, 
then the segments are connected together. This procedure is robust against cosmic ray hits. 

3.5    CALCULATION OF TARGET SPEED VIA LINEAR REGRESSION 

While the detected streak on the projected plane gives us information about the angle of the 
target's movement, it may give erroneous information about target speed since the target path may 
not be detected in its entirety. This occurs, for example, when the target goes off the edge of the 
focal plane during a look, intersects clutter, or has a varying SNR. By recalling frame numbers 
during which the maximum values occurred along the path of the streak, the target's speed may 
be estimated. Denote the distance in pixels of the ith pixel along the path of the streak as d,, 
and denote the frame number during which the ith pixel's maximum value occurred as t{. Then a 
sequence of distance versus time pairs for an L-pixel streak is 

{di,U}Lv (3-22) 

The equation of a line in the distance versus time coordinate space is 

d = mt + b (3.23) 

where m is the slope of the line in pixels/frame and b is the d intercept. A popular approach toward 
finding the line which best fits noisy data is linear regression, in which the parameters m and b of 
the line are chosen to minimize 
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L 

^2(dt - mti - 6)2. (3.24) 

The solution for m and 6 may be found by setting the partial derivatives of (3.24) with respect to 
m and b to zero. The resulting m and b are 

m    — 
,£diti-{'EdiZU)/L 

b  =   ^£^-m7;I>- (3-25) 
Linear regression is the maximum likelihood estimator in the situation where the errors between 

the fitted line and the data points are Gaussian distributed. Unfortunately, these errors are far 
from Gaussian in nature. The formulation of (3.25) is modified by three methods which empirically 
have been found to give better estimates of target speed: 

1. End segment deweighting: The end segments of a streak are very prone to error. 
These segments may go off the focal plane, be too long for strong signals, or 
too short for weak signals. Therefore, they are deweighted by execution of a 
modified form of (3.25) 

£ WjdiU - (Y, Widi £ u>t*i)/(£ Wt) 

b   =    ——Vifjdi-m——y^WiU (3.26) 

where the W{ are the weights assigned to each pair. 

2. Amplitude weighting: Many rotating satellites will be fluctuating in brightness 
due to solar panels and other nonuniformities. Therefore, it makes sense to give 
more weight to those (di,U) pairs originating from high amplitude maximum 
values than those pairs due to low amplitude maximum values. The W{ in (3.26) 
are set higher for high amplitude maximum values and lower for low amplitude 
maximum values. 

3. Median filtering: Occasionally, due to noise spikes, isolated values of t will be in 
error along the streak path. An example best illustrates how median filtering 
gets rid of these noise spikes. 

Consider the following sequence of (dl,ti) pairs [(1,1), (2,2), (3,3), (4,16), (5,5)] 
for a 5-pixel streak as shown in Figure 3-7. 
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Figure 3- 7.    Example of elimination of noise spikes by median filtering. 

The pair (4,16) was caused by a noisy pixel in frame 16 which happened to 
have a value larger than the signal containing pixel in frame 4. This sequence 
is median filtered by replacing the value of U in each pair by the median value 
of ti-i,ti,ti+\. After this procedure, the U of the endpoints are clamped to 
differ from the U of the adjacent pair by at most two. In this manner isolated 
noise spikes will be drastically attenuated in their effect on linear regression. 

3.6    ALGORITHM PERFORMANCE 

3.6.1      Sensitivity 

Detection sensitivity was evaluated by adding constant amplitude streaks of various SNRs to 
shuttered 9.6-s frame data and using Monte Carlo techniques to find the probability of detection. 
The streak probability of detection is 0.95 for a streak probability of false alarm of 10-10.   The 
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reason why this false alarm rate is set so low is that it is for a single streak. To approximate the 
false alarm rate for an entire look, the false alarm rate for the single streak must be multiplied by 
the total number of candidate streak paths being tested. The total number of streak paths is the 
number of starting positions (420 x 420) times the number of streak lengths (420) times the number 
of angles (20). When all these numbers are multiplied together, the approximate false alarm rate 
per look turns out to be 0.15. This number is probably at least an order of magnitude too high 
because all of the candidate streak paths overlap. Nonetheless, the point is that the single streak 
Pfa must be extremely low in order to keep the pja for the entire look low. In Table 3-1 is listed 
the required SNR (in amplitude, for a single, unprojected pixel containing the streak) required to 
achieve a streak pd = 0.95 and streak p/a=10~10. The required SNR is a function of the number 
of frames and projected streak length. 

TABLE 3-1. 

Amplitude SNR Required for Streak pd=0.95 and Streak pfa =10"10 

Unprojected SNRamp for Streak Detection 

Total Streak Length = 

Number of frames = 2 

Number of frames = 3 

Number of frames = 5 

Number of frames = 7 

Number of frames = 10 

6.4 

5.8 

6.0 

6.0 

6.0 

10 

4.3 

4.0 

4.0 

4.1 

4.1 

20 

3.6 

3.2 

3.4 

3.6 

3.7 

40 

2.9 

2.7 

2.8 

2.9 

3.2 

Table 3-1 is useful in determining how many frames should be collected for a fixed stare time. 
For a fixed stare time, the projected length of a streak will be constant regardless of how the time is 
divided among the frames. As long as the object moves one or more pixels during the frame time, 
the number of object photons that hit a pixel is not affected by frame time. The shorter the frame 
time, the higher the single-pixel unprojected streak SNR will be, since less noise is accumulated 
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per pixel until we hit the lower limit on the frame exposure time, which is the time required for 
the object to move a pixel. Because the streak SNR required to produce the detection statistics of 
Table 3-1 is fairly constant as a function of frame number, the implication is that we should split up 
the stare time into as many frames as possible, as long as the object moves at least a pixel during 
the frame exposure time. Because endpoints of streaks on individual frames may be attenuated if 
there is appreciable signal in the same location on adjacent frames, it is good practice to choose 
the frame time so that the object produces a streak of at least a few pixels length in each frame. 

The sensitivity of only the MTI section of the algorithm may be characterized in terms of 
the probability that a single binary pixel is "1" given that a signal with known SNR is present, 
for a binary threshold chosen to deliver a fixed single pixel probability of false alarm. Simulated 
streaks were added to 11 frames of shuttered CCD data which had equal components of Poisson 
and Gaussian noise, each being 45 electrons rms at the input to the A/D converter. A plot, shown 
in Figure 3-8, was made of the probability of a single binary pixel being "1" at the MTI filter 
output as a function of the unprojected streak single pixel SNR. The binary threshold was set so 
that the probability of a single binary pixel being "1" was 0.01, given that only noise was present 
at the pixel location. 

Also plotted in Figure 3-8 is the same detection sensitivity curve for the GEODSS1 MTI filter, 
representing the current state-of-the-art. The GEODSS algorithm employs a constant false alarm 
rate (CFAR) technique of binary quantizing the signal at the output of the camera (a sliding window 
just prior to the pixel under question is used to estimate mean and variance). The early frames in 
the sequence are logically ORed to establish a background frame (B). This frame is complemented 
to form B. Stellar rejection is then accomplished by forming the logical-AND, D»B, for each data 
frame D*. All D{» B frames are then ORed together to form the OR frame. In these tests, the first 
2 frames form the background, while the remaining 9 frames are data used to form the OR frame. 
The OR frame is passed through an isopixel cleanup to yield the final OR frame. 

The MTI filter is roughly 6 dB or twice as sensitive as the GEODSS MTI filter. 

3.6.2    False Alarm Rate 

The complete satellite detection algorithm with both MTI and post-MTI processors has been 
tested on 120 x 120-pixel data taken at Socorro, New Mexico, with a 6-inch Celestron telescope. 
The results indicate that, for 2 to 11 frames per look, the algorithm will detect satellites with very 
low false alarm rates as long as the mount jitter is less than a pixel in extent. Most false alarms 
were due to anomalously large ETS mount drifts which will not happen if the mount is properly 
operating, and cosmic ray hits which may be eliminated if single-frame detections are ignored. The 
remaining situation causing false alarms occurs under low gain settings (320 electrons per A/D 
count) when the background is very bright (150,000 electrons output per CCD cell) and rapidly 
changing.   Saturation effects in columns also cause false alarms.   Ignoring the false alarms from 

Ground-based Electro-Optical Deep-Space Surveillance System. 
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Figure 3-8.    DSS MTI versus GEODSS MTI sensitivity. 
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abnormal mount drift, out of 442 looks, there were three false alarms due to cosmic ray hits and 
two due to a bright changing background. 

3.6.3      Accuracy 

In this section, the algorithm's estimation accuracy of a object's movement is discussed in terms 
of two components, angle and speed. Closed-form solutions for Cramer-Rao bounds on estimation 
accuracy for Gaussian-shaped objects with continuous sampling have been derived by Y. Chen [23]. 

In Figure 3-9 are some plots of the standard deviation of speed and angle errors as a function 
of amplitude SNR. In these cases the streak path is exactly vertical going through the centers of 
the pixel locations. Each error measurement was found by performing 20 runs, each consisting of 
processing 10 frames of Gaussian random noise plus signal. The point spread function was Gaussian 
with standard deviation of half a pixel width. Note that the estimation errors become negligible for 
SNRs in the neighborhood of 6 or so. For SNRs greater than 4 in amplitude, the rms speed error 
is within a factor of 2 of the Cramer-Rao bounds of [23]. However, the applicability of the bounds 
in [23] to our problem is questionable because of the assumptions of continuous spatial sampling, 
Gaussian distributed object shapes, pixels, and time exposures, and lack of access to frame time 
information. 

In Figure 3-10 we reran the simulations used to generate Figure 3-9 but with the streak now 
straddling pixels along its path rather than being centered. Note the significant decrease in accuracy 
estimates. 

Even for high SNRs the accuracy in the angle estimate of the object's movement is limited by 
how precisely the path's endpoints can be determined. Because the algorithm doesn't use any kind 
of pixel interpolation, the endpoints can only be determined to the nearest pixel. Therefore, angle 
accuracy is a strong function of the streak position. If the streak path happens to be coincident 
with the pixel centers, there will be far less error compared to the case where the streak straddles 
pixels throughout its path. For streaks in arbitrary positions, the magnitude error of the endpoint 
position is approximately uniformly distributed from 0 to 0.5 pixels. The standard deviation of 
this error will then be 0.5/\/l2 or 0.1443 pixels. The errors of both endpoints will add in an rms 
fashion, so that the angle error is 

,%/.14432 + .14432 /on„N stdv angle error = tan     — —. (3.27) 
streak length 

Errors in speed estimation have been measured using streaked starfields with 11 frames per 
look. These stars all had SNRs of 6 or greater. Results were as follows: 

• At 2.75 pixels per frame, 11 frames, for 9 streaks, the rms speed error was 0.02 
pixels per frame. 

• At 9.00 pixels per frame, 11 frames, for 11 streaks, the rms speed error was 0.1 
pixels per frame. 
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Figure 3-9.    Target velocity estimation errors with vertical streak, centered in pixels 
(10 frames). 
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Figure 3-10.    Target velocity estimation errors with vertical streak, straddling pixel 
boundaries (10 frames). 
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The streaks were nearly horizontal, and endpoints were estimated correctly to the nearest pixel in 
all cases. In several cases the streaks went off the focal plane during some of the frames. 

For objects with SNRs greater than 6, a simple rule of thumb for predicting estimation accuracy 
is to assume that streak path endpoints may have as much as a 0.5-pixel magnitude error in 
position, and that object speed is determined by the length of the streak path (even though speed 
is determined by linear regression) and object angle is determined by the angle of the path. 

Of course if an object fluctuates in brightness, the fluctuations may have an adverse effect on 
estimation accuracy. If the streak goes through a nebula or goes off the focal plane, estimation 
accuracy will also be degraded. 

In Figure 3-11 are shown MTI outputs and the estimated streak path for an actual fluctuating 
object. 

3.7    SUMMARY OF THE POST-MTI ALGORITHM 

In this section, the steps of the algorithm are summarized. 

1. Skew the binary image from the MTI processor at 20 angles. 

2. Perform one-dimensional binary matched filter detection on rows or columns 
of the skewed images. 

3. Use the full-precision maximum likelihood measure to pick the most likely 
streak path out of intersecting paths from the detector output. 

4. Try extending paths using the full-precision maximum likelihood measure. Try 
connecting streak segments which are colinear. 

5. Recall time tags along the streak paths and perform weighted linear regression 
to get speed estimates. 
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Figure 3-11.    Streak path estimation of actual fluctuating object. Bright areas due to 
light leaks in the focal plane. 
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4.   CONCLUSION 

This report describes a suboptimal, computationally efficient algorithm for detecting small 
moving objects amid stationary clutter in a time sequence of data. Major techniques employed 
include sample normalization by mean and standard deviation to reduce clutter, maximum value 
projection of the data to reduce the dimensionality of the data in a computationally efficient 
manner with minimal detection loss, and a two-stage matched filter detector which performs a 
binary matched filter search followed by a full-precision matched filter test to confirm detections. 

The algorithm has been tested on telescope CCD focal plane data and has been found to reliably 
detect satellites of sufficient SNR with verv low false alarm rates amid astronomical clutter. 
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APPENDIX    A 

In this appendix it is shown that for a binary quantized image with a streak in it 

• If any streak path will exceed the threshold of the binary matched filter, a 
streak path with "1" samples at its endpoints will do so. 

• From a binary maximum likelihood point of view, the binary data are more 
likely to have been caused by streaks which happen to have "1" samples at 
their endpoints versus streaks which have a "0" sample at either endpoint. 

The first assertion results from the fact that the binary matched filter threshold function T(L) 
in (3.5) of section 3.3.2 is a monotonically increasing function of L, which is the length of the path in 
samples. Therefore, if the path is increased in length by a sample, the threshold will either stay the 
same or increase. If the newly included sample is "0," the threshold cannot be exceeded. However, 
if the newly included sample is a "1" sample, then the threshold may be exceeded. Therefore, if 
the sum of any binary samples in a hypothesized streak path can exceed T(L), there must exist a 
path with "1" samples at its endpoints which can do so. 

The second assertion is somewhat more difficult to prove. If a signal is present in the fcth 
sample, then 

p{b(k) = 1)    =   psig 

p(b(k) = 0)   =    I-psi9- (A.l) 

and if noise only is present in the fcth sample, then 

p(b(k) = 1)     =     Pnoise 

P(6(fc)=0)     =     I -Pnoise- (A.2) 

Assume that samples with indices K,K + 1, ...,K + L-1 contain a known streak of L samples 
length. The streak is parameterized by K and L. We wish to estimate K and L using the maximum 
likelihood approach. 

For a given K and L, the probability of the binary data having occurred is 

K+L-l 

p(b(l),b(2),...\K,L)   =      [I   (b(k)Psig + (l-b(k))(l-psig)) 
k=K 

I] (K^Pnoise + (1 - b(k))(l - pnoise)) . (A.3) 
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The estimated K and L are those values which maximize (A.3), which is a function of all the 
binary data. Alternatively, the logarithm of (A.3) may be maximized. 

Suppose we are trying to decide which of two paths, of lengths L and L 4- Z, is more likely to 
have caused the binary data. The first path ends in "1" pixels, and the second path is simply the 
first path lengthened by Z samples which are all "0." Then from (A.3), 

logp(6(l),6(2),...|AM)    -    logp(6(l),6(2),...|A',L + Z) = 

Z (log (1 - Pnoise) ~ log (1 - Psig)) • (A.4) 

Since psig > Pnoise, the term on the right-hand side of (A.4) is positive. Therefore, the candidate 
path ending in "1" samples is more likely to have caused the binary data. Similarly, if the path 
with "1" samples at the endpoints is decreased by Z "0" samples, the probability of the shortened 
path having caused the binary data is less. Therefore, the streak paths most likely to have caused 
the binary data have "1" samples at their endpoints. 

58 



APPENDIX    B 

In this appendix is the "C" code which implements the MTI algorithm. Its input is a raster 
scan ordered file of 16-bit data corresponding to the CCD pixel voltages. Subsequent frames in 
time are assumed to follow one another in the correct order. The program outputs a file containing 
addresses, time tags, and amplitude values of the "1" pixels of the binary quantized maximum value 
projection of the input data, other files useful for diagnosis as well as streak parameter estimation 
by the post-MTI processor. 

The code for the post-MTI processor is not included because of its prohibitive length. A copy 
of this code may be obtained from Group 27 at MIT Lincoln Laboratory. 
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/* Performs the mti operation . Assumes frame is 420 by 420 */ 

/* outputs the intermediate results to files */ 

/* copyright (c) 1988 by MIT; all rights reserved. 

Developed at Lincoln Laboratory. */ 

#include<math.h> 

#include<stdio.h> 

short int buffer[177242] ; 

short int max[176840]; 

short int max2[176400]; 

short int average[176400] ; 

short int frame [176400]; 

int n_electrons,n_circuit,n_of.frames; 

struct TargetType 

{ 

short int X; 

short int Y; 

short int amp; 

}; 

struct TargetType TarDat[18001]; 

main() 

int n,x,y,z,x_limit,y_limit,z_limit.index,status.size.offset,skip; 

int number_ones; 

int min.recstdvl,recstdv2,binary_quantize(); 

int variance; 

FILE *fopen(),*input_file,*max2_file,*frame_file,*TarDat_file; 

FILE *mti_file; 

char name[200],filetype[20],disk[5],word[81]; 
short  int mti_root [256]; 

/*  generate the table  of   1/sqrt  */ 
for(x=l;x<=255;++x) 
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mti.root [x]=1024/sqrt(x+0.); 
mti_root[0]=1024; 

/* 

Initialize the max, max2, average, and frame arrays 

*/ 

for(x=0;x<176400;++x) 

{ 

max2[x]=0; 
average[x]=0; 
frame[x]=0; 
} 

for(x=0;x<176840;++x) 
{ 
max [x] =0; 
} 

/* 

set up output files for max2, TarDat.x.y,amplitude, and frame number 

*/ 

max2_file=fopen("max2.data","w"); 

frame_file=fopen("frame.data","w"); 

TarDat.file=fopen("TarDat.data","w"); 

mti_file=fopen("mti.data","w"); 

/* Perform setting up procedure for inputting the ETS data */ 

printfC Input name of file\n"); 

scanf C"/.s" ,name); 

input_file=fopen(name,"r"); 

/* Ask for other parameters */ 
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x_limit=420; 

y_limit=420; 

printfC Input no. of 420 by 420 frames \n"); 

scanf C7.d",&z_limit); 

n_of_frames=z_limit; 

size=x_limit*y_limit; 

printfC Input no. of electrons per A/D count ( 3 for hi gain )\n"); 

scanf ("7,d" ,&n_electrons); 

printfC Input circuit noise variance at A/D out \n"); 

scanf ('"/.d" ,&n_circuit); 

/* Now input the frames, one at a time, and update the maximum, 

second maximum, and average buffers */ 

for(z=0;z<z_limit;++z) 

{ 

status=fread(buffer,2,size,input_file); 

printfC Number of 16 bit words read, is '/,d\n" .status); 

for(y=l;y<=y_limit;++y) 

for(x=l;x<=x_limit;++x) 

index=(y-l)*x_limit+x-l; 

if(buffer[index]>max2[index]) 

{ 

if(buffer[index]>max[index]) 

{ 

max2[index]=max [index]; 

max[index]=buffer [index]; 

frame[index]=z; 

} 

else max2[index]=buffer[index]; 
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average[index]+=max2[index]; 
} 

else average[index]+=buffer [index]; 
} 

/*  The maximum, max2, and average arrays have all been updated. 

Normalize the average array and subtract it off 

*/ 

n=z_limit-l; 

for(x=0;x<176400;++x) 

average[x]=average[x] /n; 

/* Subtract off the average value from the maximum value, and 

normalize by the standard deviation */ 

for(x=l;x<176399;++x) 

{ 
min=10000; 

for(n=(-l);n<=l;++n) 

{ 
if(min>average[x+n])min=average[x+n]; 
} 

if((max2[x]-min)>1) 
recstdv2=2048/(max2[x]-min); 

else recstdv2=2000; 

variance=(average[x]/(n_electrons+0.))+n_circuit; 
if(variance<0)variance=0; 
if(variance>255)variance=255; 
recstdvl=mti_root[variance] ; 
max[x] = (max[x]-average[x] ); 
max2[x]=max[x]; 
if (recstdv2<(recstdvl/2) ) 

{ 
max[x]=(max[x]*recstdv2)/64; 

} 
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else 
{ 
max[x]=(max[x]*recstdvl)/64; 
} 

} 
for(x=0;x<176400;++x) 

{ 
if(max[x]<0)max[x]=0; 
if(max[x]>1999) 

{ 
max[x]=2000; 

} 
> 

/* Now OR the max value with the time value,as will be done in the MTI board*/ 
for(x=0;x<176400;++x) 

{ 
frame[x]=frame[x] <<12; 
frame[x]+=max[x]; 

> 

/* Output information corresponding to the frame during which the 
maximum value occured */ 
fwrite(max2,2,176400,max2_file); 
fwrite(frame,2,176400,frame_file); 
fwrite(max,2,176400,mti_file); 

/* Now binary quantize the output file , n is number of one pixels*/ 

n=1760; 
number_ones=binary_quantize(n,x_limit,y_limit); 

/* Output TarDat data */ 
for(x=l;x<=number_ones+l;++x) 

{ 
buffer[3*x-3]=TarDat[x].X; 
buffer[3*x-2]=TarDat[x].Y; 
buffer[3*x-l]=TarDat[x].amp; 
> 

fwrite(buffer,6,number_ones+l,TarDat_file); 
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/* The following subroutine binary quantizes the array max */ 

int binary_quantize(ones,x_limit,y_limit) 

int ones,x_limit,y_limit; 

{ 

int x,y,sum,number_ones,index,maxsam,try,threshold; 

int quant_flag; 

int local; 

printf("input 1 for pairwise binary quantization, 0 for single\n"); 

scanf ('"/,d" ,&quant_flag); 

for(x=0;x<=4000;++x)buffer[x]=0; 

local=33; 
if(n_electrons>10)local=0; 

if(quant_flag==0) 
{ 
for(x=0;x<176400;++x) 

{ 
buffer[max[x]]+=1; 
average[x]=max[x]; 

} 
> 

else 
{ 
for(x=0;x<176400;++x) 

{ 
maxsam=0; 
try=max[x+1+420] ; 
if(try>maxsam)maxsam=try; 

try=max[x+420]; 
if(try>maxsam)maxsam=try; 

try=max[x-1+420] ; 
if(try>maxsam)maxsam=try; 

try=max[x+l] ; 
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if (try>maxsam)maxsam=try; 
if(max[x] >local) 

average[x]=maxsam+max[x]; 
else average[x]=0; 
buffer[average[x]]+=1; 

> 
> 

/* Now find the threshold for binary quantization */ 

sum=0; 

x=4000; 

do 

{ 

~x; 

sum+=buffer[x] ; 

while (sum<ones); 

number_ones=0; 

threshold=x; 

printf(" Input -1 for autothreshold, threshold value for manual\n"); 

scanf(",/.d",&x); 

if(x!=(-l))threshold=x; 

printfC The threshold is '/,d\n" .threshold); 

/* now binary quantize in a raster scan order */ 

for(y=l;y<=y_limit;++y) 

for(x=l;x<=x_limit;++x) 

{ 

index=(x-l)+(y-l)*420; 
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if(average [index]>threshold) 

{ 

++number_ones; 

TarDat[number_ones].X=x; 

TarDat[number.ones].Y=y; 

TarDat[number.ones].amp=max[index]; 
average[index]=100; 
} 

else 

average[index]=0; 
max [index]=0; 

} 

TarDat[number_ones+l].X=(-l); 

TarDat[number_ones+l].Y=(-l); 

return(number_ones); 
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